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methods of discretization in 3D. In the literature, several
problems like the appearance of spurious modes [10–12],The aim of this paper is to present an extension of the P1 conform-

ing finite element method for the time-dependent Maxwell equa- the handling of inhomogeneous media and boundary con-
tions that has been previously exposed. We shall consider inhomo- ditions [5, 13, 14], or the ability to compute divergence-
geneous media with the piecewise constant dielectric and magnetic free fields [15–17] are investigated. For these questions,parameters, and precisely, the interface of two such media. By anal-

the advantages of the edge elements [5, 9, 18] were provedogy with the idea developed, we propose a method based on the
(see, among others, [19] for a review), even if this approachdualization and then the approximation of the interface conditions

in a way consistent with the one derived for the fields and the involves more unknowns than the nodal one [20–22]. The
Lagrange multipliers of the divergence constraints inside the question of the accuracy for a given mesh is, up to our
domain. Q 1996 Academic Press, Inc.

knowledge, not yet settled [21, 23, 24].
In the time dependent case, the situation is not so well

established, and the last decade has seen an important1. INTRODUCTION
literature about alternate methods, and comparisons with
the standard ones [22, 25–28]. From their work, we canIn a previous paper [1], a P1-conforming finite element
establish a list of criteria that should be satisfied by anymethod for the time-dependent three-dimensional Max-
numerical method for the Maxwell equations in the timewell equations was proposed. The applications we had in
domain:mind involved electron beam propagation, hyperfrequency

vacuum devices, etc. In this context, the method was re-
1. ‘‘Good’’ dispersion properties are required (see [21]

quired to deal with arbitrary geometries and was developed
for a precise statement). Following [21], both edge and

in view of coupling it with a particle solver of the Vlasov
nodal elements can satisfy these requirements.

equation. However, the method proved to be also ex-
2. The handling of discontinuous dielectric and mag-tremely worthwhile in pure electromagnetic wave propaga-

netic constants must be simple and easy. The edge elementtion problems like time dependent radar problems [3].
method (by construction [29, 30]) or the Lee–MadsenTherefore, an extension of this method to inhomogeneous
method [31] are well adapted, as they only impose themedia is now investigated.
continuity of the tangential part of E and H, but not ofThe first stage is to reexamine the choice of our method-
the normal part [13, 32], as is physically required. Neverthe-ology in the perspective of discontinuous fields at material
less, in regions of constant dielectric and magnetic parame-interfaces. From now on, we restrict to the case of homoge-
ters, the fields are smooth and the nodal elements, whichneous media separated by abrupt interfaces. The treatment
use a continuous representation of the fields, should beof media with a continuous variation of the dielectric and
better suited [33], because they are more accurate. For thismagnetic constants is somehow easier and can directly be
reason, some authors [34] have investigated combinationsadapted from [1]. Roughly speaking, the most widely
of both edge and nodal elements, by devising some specialspread methods for solving the Maxwell equations on un-
adaptation of the finite element spaces.structured meshes can be divided into two groups: the

3. Finally, the space and time discretizations shouldnodal and the edge element methods. Let us briefly review
prevent the resolution of a linear system at each time-step.the advantages and drawbacks of each of them and explain

the choice we make. The edge element mass matrix is not diagonal and needs
to be inverted or to be lumped by some specific technique.In the framework of the harmonic form of Maxwell’s

equations, one can refer to theoretical studies [4–6] as well Lumping techniques have recently been developed in the
framework of high order triangular nodal elements for theas more numerical experiments [7–9] that compare various
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wave equation [35] and have been extended to the Maxwell The adequate variational formulation is proposed in Sec-
tion 3 while Section 4 is devoted to the choice of theequations with quadrilateral edge elements [36], but not
discrete spaces and to the convenient setting for the dis-yet with triangular elements (see, also in the same spirit,
crete variational formulation. Then, numerical examples[37]). However, lumping techniques can lead to a reduction
are given in Section 5. A conclusion is drawn in Sectionof accuracy. In this paper, we propose an alternative way,
6. A detailed bibliography on the various approaches forfollowing the ideas developed in [1]: we use a nodal finite
solving the Vlasov–Maxwell equations in the time domainelement method which naturally leads to a diagonal mass
can be found in [1].matrix. This paper specifically details the treatment of in-

terface conditions between different media.
2. OUTLINE OF THE METHOD

We first recall the method described in [1]. It is based
In this paper, we shall consider a bounded domain Von a wave equation formulation of the Maxwell equations

which consists of two different homogeneous media V1coupled with the divergence constraints, and a P1 conform-
and V2 separated by an interface S. We denote by n(x),ing finite-element discretization based on the Hood–
x [ S, the unit normal to S oriented from V1 to V2 . LetTaylor finite element [38]. A related method using Hood–
«(x) and e(x), x [ V be the dielectric permittivity andTaylor-type finite elements can also be found in the
magnetic permeability, given byframework of 3D eddy current problems in [39]. In this

method, two tetrahedralizations are defined, the finer one
being deduced from the coarser one by dividing each tetra-

«(x) 5 H«1 in V1

«2 in V2 ,
e(x) 5 He1 in V1

e2 in V2 ,
hedron into eight subtetrahedra. The degrees of freedom
of the method are the values of the fields at the nodes of
the finer tetrahedralization and the values of the Lagrange

where «i , ei , i 5 1, 2, are constant scalars (the extensionmultipliers of the divergence constraints at the nodes of
to constant tensors would be completely straightforward).the coarser one. Both the fields and the Lagrange multipli-
The Maxwell equations are writteners are chosen to be continuous over the domain.

Now, if we consider two different homogeneous material
media meeting along an interface, we require the tetrahe- ­

­t
(«E) 2 = 3 H 5 2J,

­

­t
(eH) 1 = 3 E 5 0, x [ V,

dralization to follow the interface and we specify approxi-
(2.1)mate values of the fields at the interface nodes, where the

exact fields are discontinuous. Therefore, the approximate = ? («E) 5 r, = ? (eH) 5 0, x [ V. (2.2)
fields must also be discontinuous. We describe how this
discontinuity can be handled. The initial and boundary conditions will be specified

The method is based on the dualization and, then, the later on. The existence of classical solutions to these equa-
approximation of the interface condition. A somehow-close tions is guaranteed as soon as the following jump relations
method can be found in [40] for the treatment of boundary hold across the surface of discontinuity of « and e (see,
conditions in finite element approximations of the Navier– e.g., [43]),
Stokes equations. We choose these approximations in a
way consistent with those of the fields and of the Lagrange [E 3 n]S 5 0, [H 3 n]S 5 0,

(2.3)multipliers of the divergence constraints inside the domain.
Then, we show that, under some approximation, the La- [(«E) ? n]S 5 0, [(eH) ? n]S 5 0,
grange mulipliers of the tangential transmission condition
can be eliminated and we propose a way of dealing with where [A]S (x) denotes the jump of a quantity A across S
the discrete constraints which appear after the elimination. at the point x [ S, namely,
The same method can somehow be used for the treatment
of the normal transmission condition, but we show that [A]S (x) 5 lim

yRx,y[V2

A(y) 2 lim
yRx,y[V1

A(y).
it is more consistent not to eliminate the corresponding
Lagrange multipliers. This paper is restricted to the treat-
ment of an interface between two different media only. The solutions of the Cauchy problem for (2.1) satisfy

the divergence constraints (2.2) as soon as the initial dataThe case of more than two media which meet along an
edge or at one point requires a special treatment which is satisfy these divergence constraints, on the one hand, and

the continuity equation ­r/­t 1 = ? J 5 0 is fulfilled, on thepresented in [41] and will be submitted in a forthcoming
paper [42]. A detailed version of the algorithms developed other hand. However, after discretization, these properties

may very well be violated, for example, when the discretein this paper can also be found in [41].
Section 2 is devoted to a rough outline of the method. charge and current density rh and Jh are computed from
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a particle approximation (see [44]), so that the correspond-
ing discrete problem (2.1)–(2.2) becomes ill-posed. We
shall follow the ideas of [1] and introduce a formulation of
the Maxwell equations with dualization of the divergence
constraints which guarantees the well-posedness of the
problem. The formulation reads:

­

­t
(«E) 2 «=w 2 = 3 H 5 2J,

(2.4)
­

­t
(eH) 2 e=p 1 = 3 E 5 0, x [ V,

together with (2.2), where w(x) and p(x), for x [ V are
the Lagrange multipliers of the divergence constraints
(2.2). We shall specify w(x) and p(x) to be in H 1(R3), such FIG. 1. Doubling the nodes at the interface S.
that «=w and e=p belong to H(div, V) (see Section (3.3.1)
for these definitions). Indeed, it is readily seen that the
problem (2.4)–(2.2) is well-posed in these spaces, as soon

derive the correct interface condition. For this purpose, aas r and J belong to L2(V). Note in particular that this
variational formalism will be set up.well-posedness is not subject to the fulfillment by r and J

of the continuity equation, because of the introduction of
3. VARIATIONAL FORMULATIONS FOR THEthe multipliers. The regularity conditions on w and p imply

CONSTRAINED MAXWELL SYSTEMthe following interface conditions:

3.1. General Setting of the Problem

[w]S 5 0, [p]S 5 0, F«
­w

­nGS
5 0, Fe

­p
­nGS

5 0. (2.5) We are concerned by the Maxwell system (2.4), (2.2) in
the domain V with initial conditions given by

Notice that these interface conditions, together with Eqs. E(x, 0) 5 E0(x), H(x, 0) 5 H0(x), x [ V. (3.1)
(2.4) imply the extra interface conditions,

We assume that the boundary ­V consists of a perfectly
[«21(= 3 H 2 J) 3 n]S 5 0, [e21(= 3 E) 3 n]S 5 0. (2.6) conducting boundary GC and an artificial boundary GA on

which we prescribe the Silver–Müller absorbing boundary
condition. Extension of the present work to higher orderNow we outline the extension of the P1 conforming finite
absorbing boundary conditions on GA is possible but willelement method described in [1] to material media. Let
not be considered here. Therefore, we prescribeSh be the surface which consists of faces of tetrahedra of

the coarser mesh the vertices of which belong to S. We
denote by N S

C (respectively N S
F) the set of nodes of the E 3 n 5 0, x [ GC , (3.2)

coarser mesh (respectively finer mesh) which belong to
(E 2 Ï(e/«) H) 3 n 5 (e 2 Ï(e/«) h) 3 n, x [ GA , (3.3)Sh . We have N S

C , N S
F .

To account for the transmission conditions across Sh ,
or, equivalently,the values of the fields Eh and Hh are doubled at the nodes

of Sh , each value being assigned to one of the subdomains
(H 1 Ï(«/e) E) 3 n 5 (h 1 Ï(«/e) e) 3 n, x [ GA , (3.4)V1 and V2 (see Fig. 1). The approximate fields Eh and Hh

are chosen continuous over each subdomain V1 and V2 ,
with their restrictions to each tetrahedron of the finer mesh where e and h are prescribed electric and magnetic fields

along the artificial boundary GA . The forms (3.3) and (3.4)being polynomial of total degree 1. These approximate
fields may still have different limits on Sh , depending on are equivalent forms of the same boundary condition. We

refer to [1] for more details about this boundary condition.the subdomain V1 and V2 because of the doubling of the
values of the fields at the nodes of Sh . These limits have The Lagrange multipliers w and p have to verify the

following boundary conditions (which will be justifiedto be connected by some approximation of the interface
conditions (2.3). The aim of this paper is to rigorously later on):
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w 5 0, x [ ­V;
­p
­n

5 0, x [ GC ; p 5 0, x [ GA .
­2

­t 2 (H ? n) 5 0, x [ GC ,

(3.5)
or using (3.8) and (3.5), (3.2),

3.2. The Wave Equation Formulation H(x, t) ? n(x) 5 H0(x) ? n(x) ;x [ GC , ;t . 0. (3.13)

Following [1], the first step is to derive a wave equation
This extra boundary condition is of course satisfied byformulation of the Maxwell equations (2.4), (2.2). Elemen-
the solution of the initial Maxwell equations (2.1)–(2.2).tary algebraic manipulations lead to
Notice that it is satisfied by the constrained formulations
(2.4), (2.2), or (3.6), (3.7), (2.2), only because we have­2(eH)

­t2 1 = 3 («21= 3 H) 2 e=P 5 = 3 («21J), x [ V, chosen a Neumann boundary condition for P on GC . In
[1], a Dirichlet boundary condition for P was chosen on(3.6)
GC , so that (3.13) was not satisfied, which yielded a less
accurate solution near the boundary for the magnetic field.­2(«E)

­t2 1 = 3 (e21= 3 E) 2 «=F 5 2
­J
­t

, x [ V, (3.7)

3.3. Variational Formulation with Dualization of the
Transmission Constraintstogether with (2.2) and

3.3.1. Notations

P 5
­p
­t

, F 5
­w

­t
. As usual, we have the following canonical inclusions [45]:

H 1/2(GC) , L2(GC) , H21/2(GC).The initial data are given by

For a distribution T [ H 21/2(GC) and a function f [H(x, 0) 5 H0(x),
H 1/2(GC), we denote by (T, f )GC

, the duality pairing. The­H
­t

(x, 0) 5 =p0(x) 1 e21(= 3 E0)(x), x [ V, (3.8) same remarks and notations are also relevant for GA and
for the interface S. The symbol (B, C)V stands for the L2

E(x, 0) 5 E0(x), (V) inner product of the two vector fields B and C, namely

­E
­t

(x, 0) 5 =w0(x) 1 «21(= 3 H0 2 J0)(x), x [ V (3.9) (B, C)V 5 E
V

B(x) ? C(x) dx,

(where w0(x) 5 w(x, 0) and p0(x) 5 p(x, 0)) and the bound- where ? stands for the usual inner product of vectors in
ary conditions are written R3. We also recall [45]

(3.10)«21(= 3 H 2 J) 3 n 5 0, x [ GC , H(curl, V) 5 hB [ L2(V)3, = 3 B [ L2(V)3j,

H(div, V) 5 hB [ L2(V)3, = ? B [ L2(V)j,S«21(= 3 H 2 J) 2 !e
«

­H
­t D3 n 5 S­e

­t
2 !e

«

­h
­tD3 n,

and H(curl, div, V) 5 H(curl, V) > H(div, V). We recall
x [ GA , (3.11) that the scalar components of the tangential traces of fields

in H(curl, V) along the boundary, as well as the normal
or traces of fields of H(div, V) are defined in H 21/2(­V). The

trace property is also true for interfaces inside the domain
and gives a meaning to the interface conditions. We refer
to [45] for a more extensive discussion of the trace proper-2Se21(= 3 E) 1 !«

e
­E
­t D3 n 5 S­h

­t
1 !«

e
­e
­tD3 n,

ties of the spaces H(curl, V) and H(div, V). We define

x [ GA , (3.12)
H(V) 5 hH : V R R3, HuVi

[ H(curl, div, Vi), i 5 1, 2j.
(3.14)together with (3.5) and (3.2).

The combination of (3.6) with the boundary conditions
(3.5) and (3.10) yields an extra boundary condition on Then, we let H 1/2(NS) and H 1/2(T S) be respectively

the spaces of normal and tangent vector fields to S withH, namely,
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regularity H 1/2. These spaces will be respectively the func- Green formula on (3.15) with a test function K in H(V)
which vanishes on the boundary and on the subdomain V2tional spaces for the Lagrange multipliers of the normal

and tangential transmission conditions. We also introduce and which is such that K1 ? n 5 0 and K1 3 n is arbitrary
on S, we obtain

Gi 5 ­V > Vi , GAi 5 GA > Vi , GCi 5 GC > Vi , i 5 1, 2,
« 21

1 (= 3 H1 , n 3 K1)S 1 (t, K1 3 n)S 5 « 21
1 (J, n 3 K1)S ,

and we denote by nAi and nCi the outward unit normals
which leads toto GAi and GCi . We shall denote with an index C (resp. A)

the various intersections of the medium Vi with the per-
fectly conducting boundary GC (resp. GA). Then, the spaces t 3 n 5 (« 21

1 ((= 3 H1) 2 J1) 3 n)S .
of the Lagrange multipliers of the normal and tangen-
tial boundary conditions on GC will be chosen to be By interchanging 1 and 2, we also have
P2

i51 H 1/2(N GCi) and P2
i51 H1/2(T Gci), respectively.

t 3 n 5 (« 21
2 ((= 3 H2) 2 J2) 3 n)S .

3.3.2. The Variational Formulation with Dualization of
the Transmission Constraints for the H Field

This implies the interface condition
This formulation reads:
‘‘Find H [ H(V), P [ L2(V), n [ H 1/2(NS), t [ [(«21((= 3 H) 2 J) 3 n)]S 5 0, (3.20)

H 1/2(TS), nC 5 (nC1 , nC2) [ P2
i51 H 1/2(NGCi):

which is exactly the first condition (2.6). Furthermore,
t 3 n appears to be the common value of the traces ofd2

dt2 O2
i51

ei(H, K)Vi
1

d
dtO

2

i51
!ei

«i
(Hi 3 nAi , Ki 3 nAi)GAi «21((= 3 H) 2 J) 3 n on both sides of S. These traces

are also equal to the common value of the traces of
(­E/­t) 3 n on both sides of S. Therefore, we have1 O2

i51
«21

i (= 3 H, = 3 K)Vi

t 3 n 5 S­E1

­t
3 nDU

S
5 S­E2

­t
3 nDU

S
. (3.21)1O2

i51
ei(= ? K, P)Vi

1O2
i51

ei(Ki , nCi)GCi

1 (n, e1K1 2 e2K2)S Conditions (2.6) or (3.21) express that there is no (time
derivative of) magnetic current on S. Of course, all these

1 (t, (K1 2 K2) 3 n)S 5O2
i51

«21
i (J, = 3 K)Vi calculations are only justified if the fields are regular

enough. In general, the regularity given by the variational
formulation alone is not sufficient to allow the integrations

2
d
dtO

2

i51
SSei 2 !ei

«i
hi 3 nAiD, Ki 3 nAiD

GAi
by parts which lead to (3.21). Therefore we would rather
view it as an ‘‘interpretation’’ of the Lagrange multiplier

;K [ H(V), (3.15) t 3 n rather than an exact formula. This interpretation is
fundamental for the treatment of intersections of more(= ? H, qi)Vi

5 0 ;qi [ L2(Vi), ;i 5 1, 2, (3.16)
than two media along edges or at points. Indeed, in these
cases, formulas (3.21) will be used to link together the(Hi , lCi)GCi

5 (H0i , lCi)GCi
;lCi [ H1/2(NGCi), ;i 5 1, 2,

several values of the Lagrange multipliers (as many as the
(3.17) number of interfaces meeting along this edge or at this

point). Indeed, in [41], we detail why these Lagrange multi-(l, e1H1 2 e2H2)S 5 0 ;l [ H1/2(NS), (3.18)
pliers cannot be left independent one to each other.

In a very analogous fashion, we have(s, (H1 2 H2) 3 n)S 5 0 ;s [ H1/2(TS).’’ (3.19)

n ? n 5 2P1uS 5 2P2uS , (3.22)Note that n is a normal vector field and that, for instance,
(Ki , nCi)GCi

5 (Ki ? nCi , nCi ? nCi). It is easily checked that
problem (3.15)–(3.19) is a variational formulation of the so that the interface relation (2.5) holds, or in other words,

there is no magnetic charge at the interface S. Further-wave equations (3.6), (3.7), (2.2) with boundary conditions
(3.10), (3.11), (3.5) (a detailed proof can be found in [41]). more, (3.22) shows that n ? n can be interpreted as the

common value of the trace of P on both sides of the inter-The interpretation of the Lagrange multipliers n and t will
be useful for the numerical approximation. By using the face S. Similarly, we have
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nCi ? nCi 5 2PiuGCi
, i 5 1, 2, (3.23) which exactly yields the second interface condition (2.6).

Furthermore, (3.29) can be rewritten

which shows that nCi ? nCi can be interpreted as the trace
of P on GCi . t 3 n 5 S­H1

­t
3 nDU

S
5 S­H2

­t
3 nDU

S
(3.31)

3.3.3. The Variational Formulation with Dualization of
and shows that t 3 n coincides (at least formally) with thethe Transmission Constraints for the E Field
common value of the (time derivative of) H 3 n on both

The formulation reads: sides of the interface. Relation (3.31) can be interpreted
‘‘Find E [ H(V), F [ L2(V), n [ H 1/2(NS), t [ as the absence of electric current along the interface S.

H 1/2(TS), tC 5 (tC1 , tC2) [ P2
i51 H 1/2(TGCi): Then, we have

(3.32)n ? n 5 2F1uS 5 2F2uS ,d2

dt 2 O2
i51

«i(E, F)Vi
1

d
dt O

2

i51
!«i

ei
(Ei 3 nAi , Fi 3 nAi)GAi

so that the interface relation (2.5) holds, or in other words,
there is no electric charge at the interface S. n ? n can be1 O2

i51
e 21

i (= 3 E, = 3 F)Vi interpreted as the common value of the trace of F on both
sides of the interface S. We also have

1 O2
i51

«i(= ? F, F)Vi
1 O2

i51
(Fi 3 nCi , tCi)GCi

tCi 3 nCi 5 (e 21
i (= 3 Ei) 3 nCi)uGCi

(3.33)1 (n, «1 F1 2 «2 F2)S

5 S­Hi

­t
3 nCiDU

GCi

,
1 (t, (F1 2 F2) 3 n)S 5 2

d
dt O

2

i51
(J, F)Vi

which shows that tCi can be interpreted as the trace of
1

d
dt O

2

i51
SShi 1 !«i

ei
ei 3 nAiD, Fi 3 nAiD

GAi
(­H/­t) 3 n, or equivalently, as the (time derivative of
the) electric current on GCi . From these considerations,

;F [ H(V), (3.24) showing that the solution of formulation (3.24)–(3.28) sat-
isfies the correct interface and boundary conditions is(= ? E, ci)Vi

5 0 ;ci [ L2(Vi), i 5 1, 2, (3.25)
very easy.

(Ei 3 ni , sCi)GCi
5 0 ;sCi [ H1/2(TGCi), i 5 1, 2, (3.26)

3.3.4. Replacement of the Curl–Curl Operator by a
(l, «1 E1 2 «2 E2)S 5 0 ;l [ H1/2(NS), (3.27) Laplace Operator

(s, (E1 2 E2) 3 n)S 5 0 ;s [ H 1/2(TS).’’ (3.28) If the fields are regular enough, we can replace the space
H(V) by the space H(V) defined by

Remark 3.1. The Lagrange multipliers n and t in the
H(V) 5 hH [ L2(V)3, H uVi

[ H 1(Vi)j. (3.34)E field and H field formulations are not the same.

The interpretation of the Lagrange multipliers follows Then, for H and K in H(V), we have [46] (with the Einstein
from the same method as for H. This gives the formal iden- summation conventions)
tities

(= 3 H, = 3 K)Vi
1 (= ? H, = ? K)Vi

t 3 n 5 (e 21
1 (= 3 E1) 3 n)uS

(3.29) 5 (= : H, = : K)Vi
1 (=Hi,a 3 nij , ua 3 Ki)S (3.35)

5 (e 21
2 (= 3 E2) 3 n)uS

1 O2
i51

(=Hi,a 3 ni , ua 3 Ki)Gi
,

and, thus,

where the double dots : denote the contracted product of
[e21(= 3 E) 3 n]S 5 0, (3.30) two tensors, nij 5 n if (i, j) 5 (1, 2) and 2n if (i, j) 5 (2,
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1), Hi,a , is the ath component of the field Hi and ua is the Let y be a node of the finer tetrahedralization of Vi (i.e.,
y [ N Vi

F ). We denote by f i
y the P1 basis function associatedbasis vector in the ath direction. However, it must be

pointed out that the formulations with H(V) and H(V) are with y with respect to the finer mesh restricted to Vi . If,
y [ S, there exist two such basis functions associated withnot equivalent in general when the fields are not regular

enough, i.e., when the geometry is singular. The solutions y: f 1
y and f 2

y , which have disjoint supports. Similarly, if z
is a node of the coarser tetrahedrization of Vi , we defineof the formulation posed on H(V) are not singular although

the true solutions of the Maxwell equations are. However, c i
z , the P1 basis function associated with z with respect to

the coarser mesh restricted to Vi . Throughout the paper,the singularity moves to the Lagrange multipliers of the
divergence constraints (P, F, and nC) which can no more y will denote nodes of the finer tetrahedrization while z

will stand for nodes of the coarser one.be proved to be zero. In this respect, the modified formula-
tion in the space H(V) amounts to project the solution of
Maxwell’s equation on the regular fields and to carry the 4.2. The Discrete Spaces
singularity onto the Lagrange multipliers. In practice, we

We define V h , H(V) byuse the formulation in H(V).

V h 5 hH [ H(V), Hi 5 H uVi
[ C 0(Vi)3, i 5 1, 2,4. THE DISCRETE VARIATIONAL FORMULATION

Hi uT [ P1(T), ;T [ T Vi
F , i 5 1, 2j.

(4.1)

4.1. The Mesh

For the sake of simplicity, the perfectly conducting For H [ V h, we can write
boundary GC and the external applied fields e and h will be
ignored in the forthcoming presentation. Their treatment is H(x) 5 O

y[N
V1
F

H 1
y f 1

y(x) 1 O
y[N

V2
F

H 2
yf 2

y(x), (4.2)
rather easy and we refer the reader to [41 or 42] for more
details. As noted in Section 2, we introduce two levels
of meshes. A coarser tetrahedral mesh and a finer one,

where H i
y [ R3, for any node y of the finer tetrahedraliza-obtained by dividing each tetrahedron into eight subtetra-

tion of Vi . We also define L2h , L2(V) byhedra. We assume that the tetrahedralization follows the
interface S, in the sense that S can be approximated by a
surface Sh which consists of a union of faces of tetrahedra L2h 5 hP [ L2(V), Pi 5 P uVi

[ C 0(Vi), i 5 1, 2,
of either mesh.

Pi uT [ P1(T), ;T [ T Vi
C , i 5 1, 2j.

(4.3)
We now introduce the following notations. T V

C denotes
the set of the coarser tetrahedra of V while T V

F denotes
For P [ L2h, we can writethe set of the finer ones. The similar notations T Vi

C and
T

Vi
F hold for the subset of tetrahedra which are contained

in Vi . By the above assumption we have P(x) 5 O
z[N

V1

C

P 1
z c 1

z(x) 1 O
z[N

V2

C

P 2
zc 2

z(x), (4.4)

T V1
C < T V2

C 5 T V
C, T V1

F < T V2
F 5 T V

F.

where P i
z [ R, for any node z of the coarser tetrahedraliza-

We also denote N V
C and N V

F the set of nodes of the tion of Vi .coarser mesh and of the finer mesh, respectively, in V, and For the Lagrange multipliers of the tangential con-
N Vi

C , N Vi
F , the similar sets for each of the subdomains straints on S, we choose a space of continuous functions

Vi . Also, N S
C and N S

F stand for the set of the nodes of in order to have the same regularity as for the Lagrange
the coarser and finer mesh, respectively, which belong to multipliers inside the domain. We recall that H 1/2(TS)
the approximation Sh of the surface S. By definition, we consists of vector fields tangent to S. However, it is not
have possible in general to find smooth approximate fields tan-

gent to the surface Sh because Sh has angular points at the
N V1

C > N V2
C 5 N S

C, N V1
F > N V2

F 5 N S
F . nodes z [ N S

C. We thus emphasize the smoothness condi-
tion and relax the geometrical condition by defining an

Finally, we denote by T S
C and T S

F the traces respectively external approximation T h ,y H 1/2(TS).
of the coarser and finer tetrahedralization of V on S, Let y [ N S

F. We define the normal vector of Sh at y by
namely the set of triangles which are faces of tetrahedra
of the coarser or finer mesh and which are contained in

nS
y 5 O

T[T
S
F(y)

nT Surf(T)@ O
T[T

S
F(y)

Surf(T) , (4.5)Sh . From now on, we identify the surface S and its approxi-
mation Sh .
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where T S
F(y) denotes the subset of triangles of T S

F which O2
i51

ei SHn11 2 2Hn 1 Hn21

Dt2 , KD
Vi

share y as a common vertex, and nT is the unit normal to
the triangle T oriented from V1 to V2 . Note that n S

y is not
a unit vector. A similar formula is used to define n S

z, for
1O2

i51
!ei

«i
SHn11

i 2 Hn21
i

2Dt
3 ni , Ki 3 niD

GAi
z [ N S

C, by simply replacing the set T S
F(y), by its analogue

for the coarser mesh T S
C(z).

Then, for y [ T S
F, we define f S

y as the restriction of S
1O2

i51
«21

i (= 3 Hn, = 3 K)Vi
1O2

i51
ei(= ? K, Pn11)Viof the P1-basis function associated with the finer triangula-

tion and the node y. We then define the approximation
1 (nn11, e1K1 2 e2K2)Sspace T h of H 1/2(TS) in the following way:

3 (tn11, (K1 2 K2) 3 n)S 5O2
i51

«21
i (Jn, = 3 K)Vi

T h 5 Ht [ C 0(S)3, t(x)

(4.6)
;K [ Vh, (4.8)

5 O
y[N

S
F

tyfS
y(x), ty [ R3, ty ? nS

y 5 0, ;y [ N S
FJ . O2

i51
ei(= ? Hn11, q)Vi

5 0 ;q [ L2h, (4.9)

(l, e1Hn11
1 2 e2Hn11

2 )S 5 0 ;l [ H2h, (4.10)

We notice that T h ,y H 1/2(TS) because t(x) ? n(x) ? 0, in (s, (Hn11
1 2 Hn11

2 ) 3 n)S 5 0 ;s [ Th.’’ (4.11)
general, if n(x) is the normal to Sh .

Similarly, for z [ T S
C, we define c S

z as the restriction Let P̃n11 5 Dt2Pn11, ñn11 5 Dt 2nn11, t̃ n11 5 Dt 2t n11. Then,
to S of the P1-basis function associated with the coarser H n11, P̃ n11, ñn11, and t̃ n11 solve the variational formulation:
triangulation and the node z. We then define the approxi- ‘‘Find H [ V h, P [ L2h, n [ N 2h, t [ T h:
mation space N 2h of H 1/2(NS) in the following way:

O2
i51

ei(H, K)Vi
1 O2

i51

Dt
2 !ei

«i
(Hi 3 ni , Ki 3 ni)GAi

N 2h 5 Hn [ C 0(S)3, n(x)

(4.7) 1 O2
i51

ei(= ? K, P)Vi
(4.12)

5 O
z[N

S
C

nz nS
z c S

z(x), nz [ R, ;z [ N S
CJ .

1 (n, e1 K1 2 e2 K2)S

1 (t, (K1 2 K2) 3 n)S 5 (GH , K)V ;K [ V h,

We notice that N 2h ,y H 1/2(NS) because n(x) 3 n(x) ? 0,
and such that Eqs. (4.9)–(4.11) are satisfied.’’in general.

In (4.12), we dropped the tildes and the superscriptsWith these definitions, t is chosen P1-conforming on the
‘‘n 1 1’’ for simplicity, and (Gh , K)V is a global notationtrace on the finer tetrahedralization, while n is chosen P1-
for all the other terms of Eq. (4.8) which do not appearconforming on the coarser tetrahedralization. The reason
in the left-hand side of (4.12). Note that since V h is a finitefor doing so is that t is interpreted through relation (3.21)
dimensional space, GH is a linear form on V h, which justifiesas the tangential trace on S of a field while n is interpreted
the duality notation.through (3.22) as the trace on S of a Lagrange multiplier.

Then, the resolution algorithm is better set if Eqs. (4.12)Now, the numerical method is defined by the discrete
and (4.9)–(4.11) are written in matrix form. For this pur-variational formulations obtained by replacing in (3.15)–
pose, we introduce a positive definite self-adjoint operator(3.19) and (3.24)–(3.28) the spaces H(V), L2(V), H 1/2(NS),
M (for ‘‘mass matrix’’) on V h, defined byand H 1/2(TS) respectively by V h, L2h, N 2h, and T h.

4.3. Time Discretization and Resolution (MH, K)V 5O2
i51

ei(H, K)Vi

(4.13)The time discretization is obtained by the usual leap-frog
scheme. Let H n, Pn, nn, t n, and J n be the approximations of 1O2

i51

Dt
2 !ei

«i
(Hi 3 ni , Ki 3 ni)GAi

;H, K [ Vh.
H, P, n, t, and J at time tn 5 n Dt. Then the time discretiza-
tion of formulation (3.15)–(3.19) (with, GC 5 B, e 5 h 5
0) is given by Similarly, we define the operators L : L2h R V h, N :

N 2h R V h, and T : T h R V h by‘‘Find H n11 [ V h, Pn11 [ L2h, nn11 [ N 2h, t n11 [ T h:
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ever, there is an easy way of eliminating at least the La-
(LP, K)V 5O2

i51
ei(= ? K, P)Vi

;K [ Vh, ;P [ L2h, (4.14) grange mulipliers t of the tangential constraints, by use of
an appropriate quadrature formula. The elimination of the

(Nn, K)V 5 (n, e1K1 2 e2K2)S ;K [ Vh, ;n [ N2h, (4.15) Lagrange multipliers n of the normal constraints may also
be done to some extent. These methods are detailed in(Tt, K)V 5 (t, (K1 2 K2) 3 n)S ;K [ Vh, ;t [ Th. (4.16)
the next subsection.

These operators allow us to write system (4.12) and (4.9)– 4.4. Elimination of the Lagrange Multipliers of the
(4.11) in the form Transmission Constraints

4.4.1. An Approximation of the Bilinear FormMH 1 LP 1 Nn 1 Tt 5 GH
(t, (H1 2 H2) 3 n)S

LTH 5 0
(4.17) We begin to write

N TH 5 0

(t, (H1 2 H2) 3 n)ST TH 5 0.

5 E
S
S O

y[N
S
F

tyf S
y(x)DSince M is a positive definite self-adjoint operator, we

can write

(4.18)H 5 M 21(GH 2 LP 2 Nn 2 Tt). ? S O
y[N

S
F

((H 2
y 2 H 1

y) 3 n) f S
y(x)D dS(x).

This allows us to eliminate H from system (4.17) and to
end up with the following matrix system for P, n, and t:

If one decomposes the integral according to the triangula-
tion of S, we get

(LTM 21L)P 1 (LTM 21N)n 1 (LTM 21T)t 5 LTM 21GH

(t, (H1 2 H2) 3 n)S 5 O
T[T

S
F

O
y,y9[N

S
F
(T)

(N TM 21L)P 1 (N TM 21N)n 1 (N TM 21T)t 5 N TM 21GH

(T TM 21L)P 1 (T TM 21N)n 1 (T TM 21T)t 5 T TM 21GH .
(4.19) (ty , (H2

y9 2 H1
y9) 3 nT) E

T
fS

y(x)fS
y9(x) dS(x),

If the variational formulation (4.12) and (4.9)–(4.11) is
where, for a triangle T in T S

F we denote by N S
F(T) thewell-posed, the matrix system (4.19) is invertible. The well-

set of nodes of the finer tetrahedralization which are verti-posedness of the discrete variational formulation and the
ces of T. We recall the quadrature formula, exact for poly-convergence of the method will be investigated in future
nomials of degree one,work.

Remark 4.1. In the vacuum case, only the upper left E
T

g(x) dS(x) Q
1
3 S O

y vertex of T
g(y)D Surf(T). (4.20)block of the matrix system (4.19) appears in the matrix

formulation. The system is solved by a conjugate gradient
method with a diagonal preconditioner.

By using this quadrature formula, we have
By analogy with the vacuum case, the numerical resolu-

tion of system (4.19) is more efficiently done by a block E
T

f S
y(x)f S

y9(x) dS(x) 5
1
3

Surf(T) dyy9 ,iterative method. The inversion of each block (LTM 21L),
(N TM 21N), or (T TM 21T) is done by a conjugate gradient
method with a diagonal preconditioner. We recall that we where d stands for the Kronecker delta. Therefore,
do not need to reach high levels of convergence, since the
Lagrange multipliers are not physically interesting quanti- (t, (H1 2 H2) 3 n)Sties. We only need to ensure that at each time step, the
field will not go too far away from the subspace defined

Q O
T[T

S
F

H O
y[N

S
F (T)

(ty , (H 2
y 2 H 1

y) 3 nT)
1
3

Surf(T)Jby the divergence and transmission constraints.
Even with the above described algorithm, the inversion

of system (4.19) and the storage of the Lagrange multipliers
are too expensive in terms of computer resources. How- and, by interchanging the summation,
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(t, (H1 2 H2) 3 n)S Now, it is well known that the constraints involved in
the definition of the space V h

0 are not easily dealt with
numerically. This motivates the introduction of a projec-Q

1
3 O

y[N
S
F

Sty , (H 2
y 2 H 1

y) 3 S O
T[T

S
F(y)

nT Surf(T)DD
tion method that is detailed in the next subsection.

Q O
y[N

S
F

(ty , (H 2
y 2 H 1

y) 3 n S
y)a S

y , (4.21) 4.4.2. The Projection Method

We introduce the orthogonal projection P (with respect
to the inner product of L2(V)) of V h onto V h

0. For H in
V h, PH is defined bywhere

PH [ V h
0

(4.28)a S
y 5

1
3 O

T[T
S
F(y)

Surf(T). (4.22)
(PH 2 H, K)V 5 0 ;K [ V h

0.

Then, with the operators M, L, and N defined by (4.13),Thus, Eq. (4.11) can be approximated by
(4.14), and (4.15), we can write problem (4.25)–(4.27) in
matrix form:

O
y[N

S
F

(ty , (H 2
y 2 H 1

y) 3 n S
y) a S

y 5 0

H [ V h, P [ L2h, n [ N 2h,

;(ty)y[N
S
F
, ty [ R3, ty 3 n S

y 5 0, PH 5 H,

(PMP)H 1 (PL)P 1 (PN)n 5 PGH , (4.29)

or, equivalently, by LTPH 5 0,

N TPH 5 0.

(H 2
y 2 H 1

y) 3 n S
y 5 0 ;y [ N S

F. (4.23)

This problem can be simplified further by introducing
the generalized inverse (PMP)21 defined as the operatorLet us introduce the space V h

0 of the discrete fields H
which to Y in V h associates X in V h solution of the system:in V h which satisfy the constraints (4.23):

PX 5 X
(4.30)V h

0 5 hH [ V h, (H 2
y 2 H 1

y) 3 n S
y 5 0, ;y [ N S

Fj. (4.24)
(PMP)X 5 PY.

If the above presented approximation is made, the varia-
Since, the operator PMP maps V h into itself and has re-tional formulation (4.12), (4.9)–(4.11) can be restated:
spectively V h

0 and (V h
0)' for range and kernel, (PMP)21 is‘‘Find H [ V h

0, P [ L2h, n [ N 2h:
well defined by (4.30). Then, problem (4.29) is equiva-
lent to

O2
i51

ei(H, K)Vi
1 O2

i51
Dt !ei

«i
(Hi 3 ni , Ki 3 ni)GAi

(4.31)H 5 (PMP)21[GH 2 LP 2 Nn],

1 O2
i51

ei(= ? K, P)Vi

where P and n are solutions of the system
1 (n, e1 K1 2 e2 K2)S 5 (GH , K)V ;K [ V h

0, (4.25)

(LT(PMP)21L)P 1 (LT(PMP)21N)n 5 LT(PMP)21GHO2
i51

ei(= ? H, q)Vi
5 0 ;q [ L2h, (4.26)

(N T(PMP)21L)P 1 (N T(PMP)21N)n 5 N T(PMP)21GH .
(l, e1 H1 2 e2 H2)S 5 0 ;l [ N 2h.’’ (4.27) (4.32)
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The size of the matrix system (4.32) has been reduced, (H, K)V Q (H, K)V,h (4.35)
compared with (4.19). However, this procedure is only
worthwhile if the projection P and the generalized inverse with
(PMP)21 can easily be computed. We now show that this
is the case if we use an appropriate quadrature formula in

(H, K)V,h 5 O2
i51

O
y[N

Vi
F

(H i
y, K i

y) a Viy , a Viy 5 O
T[T

Vi
F

(y)

Vol(T)
4

,the same spirit as for (4.21).

(4.36)
4.4.3. Analytical Determination of (PMP)21;

Mass Lumping where T Vi
F (y) denotes the set of tetrahedra of the finer

tetrahedralization of Vi which share y as a vertex. In aThe first step in the computation of P and (PMP)21 is
similar way, we can writeto replace the L2 inner product (H, K)V by a suitable

approximation (H, K)V,h , for H and K belonging to V h.
According to (4.2), we can write (H, K)Vi

Q (H, K)Vi,h
, (H, K)Vi,h

5 O
y[N

Vi
F

(H i
y, K i

y)a Viy .

(4.37)
(H, K)V

Remark 4.2. In practice, the field H is identified with
5 E

V
H(x)K(x) dx the vector of its values at the nodes of the tetrahedraliza-

tion : (H i
y)i51,2,y[N

V
i

F
and the dot product of two such vectors

5 O
T[T

V
F

E
T

H(x)K(x) dx, is denoted by

kH, Kl 5 O2
i51

O
y[N

Vi
F

(H i
y, K i

y).5 O
T[T

V
F

O
y,y9[N

V
F(T)

(H i(T)
y , K i(T)

y9 ) E
T

f i(T)
y (x)f i(T)

y9 (x) dx,

(4.33)
Then, formula (4.36) shows that the passage from the dot
product (H, K)V,h to the dot product kH, Kl is done by a
diagonal matrix. In the sequel, to be consistent with thewhere N V

F(T) denotes the set of the nodes which are
previous sections, we shall work with the former, whilevertices of the tetrahedron T of the finer tetrahedralization
in practice, the latter is preferable. This diagonal property,and i(T), the medium index of T. We recall the following
which is also referred to as ‘‘mass lumping’’ is not aquadrature formula (which is the three-dimensional ver-
weak property, but it is a direct consequence of the usesion of (4.20)), exact for polynomials of degree 1,
of a P1-conforming method. This point was already
mentioned to be crucial for the efficiency of the method
in [1].E

T
g(x) dx Q

1
4

Vol(T) O
y vertex of T

g(y),
Then, in (4.28), we may replace the L2(V) dot product

by its approximation (H, K)V,h and with (4.36), P is explic-
itly given for any H in V h bywhich leads to

(PH)i
y 5 H i

y ;y Ó N S
F,

(PH)i
y ? n S

y 5 H i
y ? n S

y ;y [ N S
F, i 5 1, 2,

(4.38)
E

T
f i

y(x)f i
y9(x) dx Q

1
4

Vol(T) dyy9 . (4.34)

(PH)1
y 3 n S

y 5 (PH)2
y 3 n S

y

By using the previous formula in (4.33), we obtain
5 SO2

i51

a Viy

a V1y 1 a V2y
H i

yD3 n S
y ;y [ N S

F.

P is block diagonal, each block being associated with a(H, K)V Q O
T[T

V
F

O
y[N

V
F(T)

(H i(T)
y , K i(T)

y )
Vol(T)

4
,

node. The matrix M can also be explicitly computed. In
the case where GAi 5 B, M is trivially found to be

(MH)i
y 5 ei H i

y . (4.39)or, by exchanging the summations,
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When GAi ? B, the bilinear form (Hi 3 ni , Ki 3 ni)GAi
can need to store t) and computer time (because the reduced

matrix system (4.32) is smaller and easier to invert thanbe approximated exactly in the same way as (t, (H1 2 H2)
3 n)S (formula (4.21)). This allows a complete analytic the original one (4.19)). Of course, the same procedure

can be used for the E field as well, for which all the abovedetermination of the matrix M and of its inverse M 21 which
is already done in [1]. In this case, the matrices M and formulas are valid, provided « and e are interchanged. In

the next section, we investigate if a similar method can beM 21 are also block diagonal, each block being associated
with a node. Simply, instead of being scalar, the blocks used to eliminate the Lagrange multiplier of the transmis-

sion condition of the normal component.corresponding to the nodes of GAi are three-dimensional
matrices.

It is now possible to proceed to the computation of
4.4.4. The Transmission Condition of the(PMP)21. We shall only consider the case GAi 5 B and

Normal Componentrefer to [41] for the most general case. We are concerned
with the resolution of system (4.30). Since both M and If we try to mimic the method that has been used for
P are block diagonal, each block My , Py being associated the elimination of the Lagrange multiplier of the tangential
with a node y, the matrix (PMP)21 is also block diagonal. constraints, we need to find an approximation of the bilin-
The associated blocks will be denoted by (PMP)21

y and ear form (n, e1 H1 2 e2 H2)S , for n [ N 2h, H [ V h. We
are given by system (4.30) with M and P replaced by have, by splitting the integration domain S into triangles
My and Py . For an internal node y Ó S, M is scalar of the coarser tetrahedralization,
and P is the identity of R3, so that the obvious result
follows,

(n, e1 H1 2 e2 H2)S

(PMP)21
y 5 e 21

i IdR3, 5 O
T[T

S
C

O
z[N

S
C(T)

O
y[N

S
F (T)

nzn S
z

where i is the medium index of y and IdR3 is the identity 3 (e1 H 1
y 2 e2 H 2

y) E
T

c S
z(x)f S

y(x) dS(x),
matrix of R3. For a node y on S, an easy computation

(4.40)
shows that for any given vector Yy 5 (Y 1

y, Y 2
y) [ R6, the

vector Xy 5 (X 1
y, X 2

y) 5 (PMP)21
y Yy is given by

where we have denoted by N S
C(T) the set of the nodes

of the coarser tetrahedralization which are vertices of T
and by N S

F(T) the set of nodes of the finer tetrahedraliza-X 1
y 5

1
un S

yu2
(x 1

y n S
y 1 jy 3 n S

y)
tion which are included in the coarse triangle T. It is fairly
clear that the use of the quadrature formula (4.20) is not

X 2
y 5

1
un S

yu2
(x 2

y n S
y 1 jy 3 n S

y), possible because it would lead to an unacceptable error.
Therefore, we are led to consider all the integrals

with
czy(T) 5 E

T
c S

z(x)f S
y(x) dS(x)

x 1
y 5

1
e1

Y 1
y ? n S

y
and to write formula (4.40) as

x 2
y 5

1
e2

Y 2
y ? n S

y

(n, e1 H1 2 e2 H2)S

jy 5
a V1y Y 1

y 1 a V2y Y 2
y

a V1y e1 1 a V2y e2
.

5 O
z[N

S
C

nzn S
z ? F O

y[N
S
F(z)

(e1 H 1
y 2 e2 H 2

y) a S
zyG ,

Therefore, the computation of the matrix (PMP)21 can
be done by hand. The elimination of the Lagrange multi- where N S

F(z) denotes the set of nodes of the finer tetrahe-
dralization which are included in a coarse triangle of Splier t thus does not produce any additional computational

cost and saves both computer storage (because there is no which share z as a vertex, a S
zy is given by



3D MAXWELL’S EQUATIONS IN INHOMOGENEOUS MEDIA 375

FIG. 2. (a) Ex in the (x, y)-plane, for z 5 20.192; computed solution; (b) Hy in the (x, z)-plane, for y 5 0; computed solution; (c) Ey in the
second medium; analytic (full line) and computed (doted line) solutions; (d) Hx in the second medium; analytic (full line) and computed (dotted
line) solutions.

(l, e1 H1 2 e2 H2)S 5 0 ;l [ N 2ha S
zy 5 O

T[T
S
C(z,y)

czy(T),

reduces to
and T S

C(z, y) stands for the set of coarse triangles on S
which share z as a vertex and such that y is a vertex of

nS
z ? F O

y[N
S
F(z)

(e1H1
y 2 e2H2

y) aS
xyG5 0 ;z [ N S

C, (4.41)some fine triangle included in T.
Then, the constraint
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FIG. 3. (a) Ex in the (x, y)-plane, for z 5 20.192; analytical solution; (b) Hy in the (x, z)-plane, for y 5 0; analytical solution.

which expresses that, for any node z of the coarse triangula- Lagrange multiplier n as an unknown and to directly solve
tion of S, a certain mean value of the jumps of the normal system (4.32). The same conclusion is of course valid
components of B through S is zero, the mean value being for E.
computed over a certain set of fine nodes y surrounding

Remark 4.3. Instead of N 2h, we could think of approxi-z. However, this constraint couples all the fine nodes y
mating n by P1, conforming finite elements on the finertogether, and the projection method would not lead to an
triangulation, namely,explicit inversion any longer. It is thus simpler to keep the

Nh 5 Hn [ C 0(S)3, n(x)

(4.42)

5 O
y[N

S
F

nyn S
yf S

y(x), ny [ R, ;y [ N S
FJ.

Then, the elimination of n would have been possible in
the same way as for t and would have led to impose the
transmission conditions

(e2H2
y 2 e1H1

y) ? nS
y 5 0, («2E2

y 2 «1E1
y) ? nS

y 5 0, y [ N S
F,

on all the fine nodes of S. However, this approximation
space is inconsistent with the interpretation of n in terms
of P (3.22) and with the approximation of P (4.3). The
consequence is probably an overconstrained system with
a slower convergence of the iterative algorithm for comput-
ing P. However, in some cases, this price can be worth

FIG. 4. Three-dimensional view of Ex; computed solution. being paid.
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FIG. 5. (a) Ey in the (x, z)-plane, for y 5 0; computed solution; (b) Hx in the (x, z)-plane, for y 5 0; computed solution; (c) Hz in the (x, z)-
plane, for y 5 0; computed solution.

5. NUMERICAL RESULTS be presented in [42] about the case of more than two media,
which meet along an edge or at one point.

We now give two numerical examples as a first attempt As a first case, we study the propagation of the TEM
to show the validity of the proposed method. These two mode in a coaxial cylindrical waveguide, made up by the
examples will illustrate the good behavior of the method junction of two coaxes, separated by a plane interface. At
in two very different cases (the transmission from one time t 5 0, we first initialize the electromagnetic fields E(0)
medium to another and the propagation through a two- and B(0) in the whole domain with zero. The coax (also
media guide), both including perfect conductor and ab- discretized by irregular tetrahedra) is then illuminated by

ingoing plane waves which enter normally to the lowersorbing boundary conditions. A more complete study will
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FIG. 6. (a) Ey in the (x, z)-plane, for y 5 0; analytical solution; (b) Hx in the (x, z)-plane, for y 5 0; analytical solution; (c) Hz in the (x, z)-
plane, for y 5 0; analytical solution.

boundary, according to the Silver–Müller boundary condi- 2 and the velocities ci , i 5 1, 2 have to fullfil the relation
k1/k2 5 c2/c1 . Figures 2a and 2b show respectively thetions (3.11) and (3.12). The waves first are propagated

through the first medium (which is the vacuum, i.e., «0 and transverse section of Ex and the longitudinal sections of
Hy obtained after 300 time steps of simulation, with ae0, are meeting the interface and are then propagated

through the second medium (characterized by «/«0 5 4 Courant number of approximately 0.5. The number of
points per wavelength is of about 30 in the propagationand e/e0 5 1). This case is of interest because an analytic

expression of the solution can be calculated. For this, we direction. These figures have to be compared with the
corresponding exact solutions, depicted in Figs. 3a and 3b.wrote the interface conditions at the interface between the

two medium. Let us note that the wavenumbers ki , i 5 1, Figures 2c and 2d show respectively the time variation of



3D MAXWELL’S EQUATIONS IN INHOMOGENEOUS MEDIA 379

hy 5 0j, obtained after 900 time steps of simulation, with
a Courant number and a number of points per wavelength
of the same order of magnitude as in the previous case.
The corresponding analytic solutions are depicted in Figs.
6a, 6b, and 6c. In the same spirit as in the first example,
Fig. 7 shows a 3D view of the Hx computed solution.

6. CONCLUSION

In this paper, we have presented the treatment of inter-
faces between dielectric media in the framework of a P1-
conforming finite element method of approximation of the
Maxwell equations. The idea is to dualize the interface
conditions between the various media and to apply the
standard P1-conforming method in each subdomain where
the dielectric and magnetic parameters are constant (or
more generally slowly variable). If a convenient discretiza-
tion of the Lagrange multipliers of these constraints is
chosen, they can be eliminated (at least those correspond-
ing to the tangential constraints) and, by using a projection
technique, the interface conditions can be dealt with very
little additional numerical effort. No mathematical theory

FIG. 7. Three-dimensional view of Hx; computed solution. has been done yet to support this method, but we think
that a rigorous analysis would help to answer some of the
questions that have been quoted along this paper.
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